Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## (3*R*,3aS,6*R*,6a*R*)-*tert*-Butyl *N*-(6-chloro-2-oxo-6a-phenylperhydrofuro[3,2-*b*]furan-3-yl)carbamate

# Jörg Erdsack, Markus Schürmann, Hans Preut\* and Norbert Krause

Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany

Correspondence e-mail: hans.preut@udo.edu

Received 20 June 2007; accepted 27 June 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.079; data-to-parameter ratio = 14.8.

The chiral title compound,  $C_{17}H_{20}$ ClNO<sub>5</sub>, arose as a side product during the synthesis of novel furanomycin derivatives. The stereochemistry at the bicyclic core is consistent with a halolactonization step. The five-membered rings are nearly perpendicular to each other [torsion angle at the common bond: -88.3 (3)°].

#### **Related literature**

For related literature, see: Erdsack & Krause (2007); Erdsack *et al.* (2007); Hoffmann-Röder & Krause (2001).



### Experimental

#### Crystal data

 $\begin{array}{l} C_{17}H_{20}\text{CINO}_5 \\ M_r = 353.79 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 6.1519 \ (7) \ \text{\AA} \\ b = 12.029 \ (2) \ \text{\AA} \\ c = 23.655 \ (4) \ \text{\AA} \end{array}$ 

#### Data collection

Nonius KappaCCD diffractometer Absorption correction: none 14042 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$   $wR(F^2) = 0.079$  S = 1.013280 reflections 221 parameters H-atom parameters constrained  $V = 1750.5 (5) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.24 \text{ mm}^{-1}\) T = 291 (1) K 0.44 \times 0.08 \text{ mm}\)

3280 independent reflections 1085 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.036$ 

 $\begin{array}{l} \Delta \rho_{max} = 0.10 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.11 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ \ with \ 1313 \ \mbox{Friedel pairs} \\ \ \mbox{Flack parameter: } 0.08 \ (10) \end{array}$ 

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2449).

#### References

Erdsack, J. & Krause, N. (2007). Synthesis. In preparation.

Erdsack, J., Schürmann, M., Preut, H. & Krause, N. (2007). Acta Cryst. E63, 0664–0665.

- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Hoffmann-Röder, A. & Krause, N. (2001). Org. Lett. 3, 2537–2538.
- Nonius (1998). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3371 [doi:10.1107/S1600536807031388]

### (3R,3aS,6R,6aR)-tert-Butyl N-(6-chloro-2-oxo-6a-phenylperhydrofuro[3,2-b]furan-3-yl)carbamate

### J. Erdsack, M. Schürmann, H. Preut and N. Krause

#### Comment

The title compound, (I), is a side product in the preparation of novel furanomycin derivatives using the gold-catalyzed cyclization of  $\alpha$ -hydroxyallenes (Hoffmann-Röder & Krause, 2001). It was obtained after an aldehyde oxidation in the presence of NaClO<sub>2</sub> and chlorolactonization of the resulted boc-protected amino acid intermediate by hypochloric acid, a degradation product of the oxidant (Erdsack & Krause, 2007). A crystal structure determination of (I) has now been carried out to establish the relative configuration of the stereogenic centers at the bicyclic core. Fig. 1 shows that the relative configuration of C6 and C6a is consistent with the stereogenic C atoms in (I) (C3 *R*, C3a S, C6 *R* and C6a *R*) were established by refining the Flack (1983) absolute structure parameter; they are consistent with those of the equivalent atoms in the starting material (Erdsack *et al.*, 2007).

#### Experimental

In a Schlenk tube equipped with a magnetic stirrer bar, 47 mg (0.15 mmol) of tert-butyl-(1R,2S)-[2-hydroxy-1-(3-phenyl-2,5-dihydrofuran-2-vl)-ethyl]-carbamate (synthesis of this compound will be described elsewhere; Erdsack & Krause 2007) was dissolved in dry dichloromethane (1.5 ml) under argon and cooled to 273 K. With stirring, 87 mg (0.23 mmol) of Dess-Martin periodinane was added in one portion. After 2 h, the mixture was diluted with diethyl ether (3 ml), quenched with sat. aq. NaHCO<sub>3</sub> and sat. aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> 1:1 (5 ml) and diluted with additional 3 ml of diethyl ether. After a few minutes with stirring at r.t., the biphasic mixture came clear. The organic phase was separated and the residue was extracted with diethyl ether (3  $\times$  10 ml). The combined organic layers were washed with aq. sat. NaHCO<sub>3</sub> and brine and dried with MgSO<sub>4</sub>. The solution was filtered and the solvent was evaporated. The crude aldehyde was dissolved in a 1:1 mixture of t-BuOH/THF (5 ml). The flask was sealed with a rubber septum and was cooled to 273 K. With vigorous stirring, a solution of NaClO<sub>2</sub> (80%, technical grade, 52 mg, 0.46 mmol) and NaH<sub>2</sub>PO<sub>4</sub>\*H<sub>2</sub>O (82 mg, 0.46 mmol) in 1 ml water was slowly added dropwise via syringe over 30 min. The reaction mixture came yellow and was allowed to stir at r.t. overnight. The mixture was diluted with water (15 ml) and extracted with diethyl ether ( $3 \times 15$  ml). The combined organic layers were dried (MgSO<sub>4</sub>), filtered and the solvent was evaporated. The residue was purified by column chromatography on silica gel (iso-hexane/EtOAc 4:1 v/v) to give 28 mg (53%) of the lactone (I) as a solid, which was suspended in a few drops of iso-hexane. Ethyl acetate was added dropwise until the compound was completely dissolved, and colourless needles of (I) were obtained by slow evaporation at ambient temperature; mp 432 K;  $\left[\alpha\right]_{D}^{21}$  – 44.0 (c 1.40, CHCl<sub>3</sub>); IR (KBr pellet), cm<sup>-1</sup>: 3419 (m), 3323 (m), 3062 (w), 2979 (m), 2932 (m), 2885 (w), 1801 (s), 1712 (s), 1510 (m), 1451 (m), 1393 (m), 1368 (m), 1253 (m), 1163 (s), 1104 (*m*), 1062 (*m*), 942 (*s*), 865 (*m*), 751 (*m*), 734 (*m*), 699 (*m*), 665 (*w*), 577 (*w*), 514 (*w*); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (p.p.m.): 7.48 - 7.43 (m, 5 H), 5.22 (dd, J = 6.3, 13.6 Hz, 1 H), 4.69 (dd, J = 4.0, 8.6 Hz, 1 H), 4.62 (d, J = 3.4 Hz, 1 H), 4.51 (dd, J = 3.9, 10.5 Hz, 1 H), 4.32 (d, J = 10.5 Hz, 1 H), 1.46 (m, 9 H);  $^{13}$ C NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  (p.p.m.) 172.0, 155.2, 132.1, 129.8, 128.7, 127.0, 94.8, 81.0, 80.1, 76.9, 63.3, 54.1, 28.2 HRMS (ESI): m/z calculated for  $C_{17}H_{21}O_5N^{35}Cl$ :  $[M + H]^+ = 354.11028$ , found 354.11002

### Refinement

The H atoms were placed in calculated positions, with C—H = 0.93–0.98 and N—H = 0.86 Å and were refined as riding, with  $U_{iso}(H) = 1.5U_{eq}$ ; the methyl groups were allowed to rotate but not to tip.

### **Figures**



Fig. 1. : The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level (arbitrary spheres for the H atoms).

### (3R,3aS,6R,6aR)-tert-Butyl N-(6-chloro-2-oxo-6a-phenylperhydrofuro[3,2-b]furan-3-yl)carbamate

| Crystal data                                      |                                              |
|---------------------------------------------------|----------------------------------------------|
| C <sub>17</sub> H <sub>20</sub> ClNO <sub>5</sub> | $F_{000} = 744$                              |
| $M_r = 353.79$                                    | $D_{\rm x} = 1.342 {\rm Mg m}^{-3}$          |
| Orthorhombic, $P2_12_12_1$                        | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab                            | Cell parameters from 14042 reflections       |
| <i>a</i> = 6.1519 (7) Å                           | $\theta = 3.1 - 25.8^{\circ}$                |
| b = 12.029 (2) Å                                  | $\mu = 0.24 \text{ mm}^{-1}$                 |
| c = 23.655 (4) Å                                  | T = 291 (1)  K                               |
| $V = 1750.5 (5) \text{ Å}^3$                      | Needle, colourless                           |
| Z = 4                                             | $0.44 \times 0.08 \times 0.08 \ mm$          |

#### Data collection

| Nonius KappaCCD<br>diffractometer                                                                                                             | 3280 independent reflections           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                                                                                                      | 1085 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                                                                                                       | $R_{\rm int} = 0.036$                  |
| Detector resolution: 19 vertical, 18 horizontal pixels $mm^{-1}$                                                                              | $\theta_{\text{max}} = 25.8^{\circ}$   |
| T = 291(1)  K                                                                                                                                 | $\theta_{\min} = 3.1^{\circ}$          |
| 309 frames via $\omega$ -rotation ( $\Delta \omega$ =1%) and two times<br>120 s per frame (three sets at different $\kappa$ -angles)<br>scans | $h = -7 \rightarrow 7$                 |
| Absorption correction: none                                                                                                                   | $k = 0 \rightarrow 14$                 |
| 14042 measured reflections                                                                                                                    | $l = 0 \rightarrow 28$                 |

Refinement

| Refinement on $F^2$                                            | H-atom parameters constrained                                                             |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | $[1.0\exp(7.10(\sin\theta/\lambda)^2)]/[\sigma^2(F_0^2)]$                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                                | $(\Delta/\sigma)_{max} < 0.001$                                                           |
| $wR(F^2) = 0.079$                                              | $\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$                                     |
| <i>S</i> = 1.01                                                | $\Delta \rho_{min} = -0.11 \text{ e } \text{\AA}^{-3}$                                    |
| 3280 reflections                                               | Extinction correction: SHELXL97,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 221 parameters                                                 | Extinction coefficient: 0.0215 (9)                                                        |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1313 Friedel pairs                                      |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0.08 (10)                                                                |
| Hydrogen site location: inferred from neighbouring sites       |                                                                                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x           | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|----|-------------|--------------|--------------|---------------------------|
| Cl | 0.6643 (2)  | 0.59959 (10) | 0.85442 (5)  | 0.1028 (4)                |
| 01 | 0.5371 (4)  | 0.6930 (2)   | 0.97543 (10) | 0.0741 (7)                |
| O2 | 0.0232 (4)  | 0.5437 (2)   | 1.04297 (11) | 0.0772 (8)                |
| O3 | 0.1997 (4)  | 0.5179 (2)   | 0.96171 (11) | 0.0702 (7)                |
| O4 | 0.5678 (5)  | 0.4974 (2)   | 1.14730 (11) | 0.0925 (9)                |
| O5 | 0.5498 (4)  | 0.6773 (2)   | 1.17002 (11) | 0.0832 (8)                |
| Ν  | 0.4380 (4)  | 0.6243 (2)   | 1.08588 (12) | 0.0678 (8)                |
| H0 | 0.3938      | 0.6917       | 1.0822       | 0.102*                    |
| C1 | 0.4893 (6)  | 0.4053 (3)   | 0.92572 (15) | 0.0687 (10)               |
| C2 | 0.3421 (8)  | 0.3404 (4)   | 0.89794 (16) | 0.0938 (14)               |
| H2 | 0.2048      | 0.3681       | 0.8894       | 0.141*                    |
| C3 | 0.3975 (9)  | 0.2339 (4)   | 0.88258 (19) | 0.1040 (17)               |
| H3 | 0.2977      | 0.1897       | 0.8635       | 0.156*                    |
| C4 | 0.5945 (10) | 0.1938 (4)   | 0.8950 (2)   | 0.1002 (16)               |
| H4 | 0.6314      | 0.1219       | 0.8843       | 0.150*                    |
| C5 | 0.7399 (9)  | 0.2570 (4)   | 0.9230 (2)   | 0.1152 (18)               |

| H5   | 0.8761      | 0.2281     | 0.9317       | 0.173*      |
|------|-------------|------------|--------------|-------------|
| C6   | 0.6885 (8)  | 0.3633 (4) | 0.93866 (18) | 0.0982 (14) |
| H6   | 0.7891      | 0.4066     | 0.9581       | 0.147*      |
| C7   | 0.4274 (6)  | 0.5205 (3) | 0.94081 (14) | 0.0601 (10) |
| C8   | 0.4180 (6)  | 0.6041 (3) | 0.89390 (14) | 0.0701 (10) |
| H8   | 0.2905      | 0.5928     | 0.8697       | 0.105*      |
| C9   | 0.4034 (6)  | 0.7103 (3) | 0.92654 (15) | 0.0781 (12) |
| H9A  | 0.4570      | 0.7721     | 0.9042       | 0.117*      |
| H9B  | 0.2543      | 0.7254     | 0.9375       | 0.117*      |
| C10  | 0.5502 (5)  | 0.5787 (3) | 0.98781 (15) | 0.0626 (10) |
| H10  | 0.7011      | 0.5530     | 0.9906       | 0.094*      |
| C11  | 0.4212 (5)  | 0.5507 (3) | 1.03969 (15) | 0.0649 (10) |
| H11  | 0.4684      | 0.4772     | 1.0527       | 0.097*      |
| C12  | 0.1912 (7)  | 0.5391 (3) | 1.01752 (18) | 0.0662 (10) |
| C13  | 0.5233 (6)  | 0.5907 (4) | 1.13647 (18) | 0.0727 (11) |
| C14  | 0.6347 (7)  | 0.6647 (4) | 1.22849 (16) | 0.0861 (13) |
| C15  | 0.8603 (6)  | 0.6207 (5) | 1.22662 (17) | 0.132 (2)   |
| H15A | 0.9223      | 0.6230     | 1.2638       | 0.199*      |
| H15B | 0.9462      | 0.6653     | 1.2015       | 0.199*      |
| H15C | 0.8581      | 0.5453     | 1.2133       | 0.199*      |
| C16  | 0.6267 (10) | 0.7804 (4) | 1.24998 (17) | 0.156 (3)   |
| H16A | 0.4821      | 0.8091     | 1.2458       | 0.234*      |
| H16B | 0.7263      | 0.8257     | 1.2289       | 0.234*      |
| H16C | 0.6667      | 0.7813     | 1.2892       | 0.234*      |
| C17  | 0.4855 (7)  | 0.5924 (4) | 1.26134 (17) | 0.1118 (15) |
| H17A | 0.3408      | 0.6221     | 1.2596       | 0.168*      |
| H17B | 0.5325      | 0.5896     | 1.3000       | 0.168*      |
| H17C | 0.4866      | 0.5188     | 1.2456       | 0.168*      |

## Atomic displacement parameters $(\text{\AA}^2)$

|    | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-----------------|--------------|--------------|--------------|
| Cl | 0.1244 (9)  | 0.0872 (8)  | 0.0967 (8)      | 0.0053 (8)   | 0.0295 (7)   | 0.0076 (7)   |
| 01 | 0.0901 (18) | 0.0578 (18) | 0.0744 (18)     | -0.0033 (16) | -0.0172 (15) | 0.0027 (13)  |
| O2 | 0.0676 (17) | 0.0769 (19) | 0.0872 (19)     | 0.0014 (16)  | -0.0038 (15) | 0.0033 (15)  |
| O3 | 0.0584 (16) | 0.0840 (19) | 0.0682 (17)     | 0.0018 (16)  | -0.0079 (14) | -0.0048 (14) |
| O4 | 0.126 (2)   | 0.0707 (19) | 0.0810 (19)     | 0.0217 (19)  | -0.0200 (18) | 0.0004 (17)  |
| O5 | 0.112 (2)   | 0.0692 (19) | 0.0681 (17)     | -0.0006 (18) | -0.0191 (16) | 0.0014 (15)  |
| Ν  | 0.080 (2)   | 0.059 (2)   | 0.0639 (19)     | 0.0043 (18)  | -0.0168 (17) | 0.0010 (17)  |
| C1 | 0.069 (3)   | 0.065 (3)   | 0.073 (3)       | 0.001 (3)    | -0.002 (2)   | 0.000(2)     |
| C2 | 0.107 (4)   | 0.085 (3)   | 0.089 (3)       | 0.003 (3)    | -0.019 (3)   | -0.018 (3)   |
| C3 | 0.130 (5)   | 0.085 (4)   | 0.096 (3)       | -0.016 (3)   | -0.008 (3)   | -0.017 (3)   |
| C4 | 0.143 (5)   | 0.059 (3)   | 0.099 (4)       | 0.003 (4)    | 0.015 (4)    | 0.003 (3)    |
| C5 | 0.111 (5)   | 0.071 (4)   | 0.163 (5)       | 0.015 (3)    | -0.013 (4)   | 0.013 (4)    |
| C6 | 0.093 (3)   | 0.058 (3)   | 0.144 (4)       | 0.007 (3)    | -0.016 (3)   | -0.009 (3)   |
| C7 | 0.054 (2)   | 0.056 (3)   | 0.070 (3)       | 0.003 (2)    | -0.004 (2)   | -0.001 (2)   |
| C8 | 0.074 (2)   | 0.069 (3)   | 0.067 (2)       | 0.007 (3)    | -0.004 (2)   | 0.004 (2)    |
| C9 | 0.091 (3)   | 0.068 (3)   | 0.076 (3)       | 0.006 (2)    | -0.016 (3)   | 0.004 (2)    |

| G10                      | 0.050 (2)        | 0.050 (2)            | 0.070 (2) |             | 0.004 (2)  | 0.001 (0)           |
|--------------------------|------------------|----------------------|-----------|-------------|------------|---------------------|
| C10                      | 0.059 (2)        | 0.058 (3)            | 0.070 (2) | 0.000 (2)   | -0.004(2)  | -0.001(2)           |
| CII                      | 0.064 (2)        | 0.061 (3)            | 0.070 (2) | -0.002 (2)  | -0.016 (2) | -0.006 (2)          |
| C12                      | 0.062 (3)        | 0.057 (3)            | 0.079 (3) | 0.000 (2)   | -0.008 (3) | 0.000 (2)           |
| C13                      | 0.068 (3)        | 0.075 (3)            | 0.075 (3) | 0.001 (3)   | -0.001(2)  | -0.002 (3)          |
| C14                      | 0.107 (4)        | 0.099 (4)            | 0.053 (3) | -0.004(3)   | -0.018 (3) | 0.010 (2)           |
| C15                      | 0.085 (3)        | 0.220 (6)            | 0.092 (3) | 0.000 (4)   | -0.021 (3) | 0.021 (4)           |
| C16                      | 0.279 (8)        | 0.100 (4)            | 0.088 (4) | -0.015 (5)  | -0.055 (5) | -0.023 (3)          |
| C17                      | 0.112 (3)        | 0.146 (4)            | 0.078 (3) | 0.005 (4)   | 0.009 (3)  | 0.010 (3)           |
| Geometric p              | arameters (Å, °) |                      |           |             |            |                     |
| Cl—C8                    |                  | 1.781 (3)            | С6-       | -H6         | 0.9        | 300                 |
| O1—C10                   |                  | 1.409 (4)            | С7—       | C8          | 1.4        | 99 (4)              |
| 01—C9                    |                  | 1.434 (4)            | С7—       | C10         | 1.5        | 16 (4)              |
| O2—C12                   |                  | 1.197 (4)            | C8-       | С9          | 1.4        | 96 (5)              |
| O3—C12                   |                  | 1.346 (4)            | C8-       | -H8         | 0.9        | 800                 |
| O3—C7                    |                  | 1.486 (4)            | С9-       | -H9A        | 0.9        | 700                 |
| O4—C13                   |                  | 1.183 (4)            | C9–       | -H9B        | 0.9        | 700                 |
| 05—C13                   |                  | 1.320 (4)            | C10       |             | 1.5        | 00 (4)              |
| 05—C14                   |                  | 1.486 (4)            | C10       | -H10        | 0.9        | 800                 |
| N—C13                    |                  | 1.368 (4)            | C11-      |             | 1.5        | 16 (5)              |
| N-C11                    |                  | 1 410 (4)            | C11-      |             | 0.9        | 800                 |
| N—H0                     |                  | 0.8600               | C14       |             | 1.4        | 83 (5)              |
| C1—C6                    |                  | 1 360 (5)            | C14       |             | 1.4        | 84 (5)              |
| C1-C2                    |                  | 1 364 (5)            | C14       |             | 1.4        | 86 (5)              |
| C1-C7                    |                  | 1 481 (5)            | C15       | —H15A       | 0.9        | 600                 |
| $C^2 - C^3$              |                  | 1 374 (6)            | C15       | —H15B       | 0.9        | 600                 |
| С2—Н2                    |                  | 0.9300               | C15       | —H15C       | 0.9        | 600                 |
| C3-C4                    |                  | 1 337 (6)            | C16       |             | 0.9        | 600                 |
| С3—Н3                    |                  | 0.9300               | C16       |             | 0.9        | 600                 |
| C4-C5                    |                  | 1 347 (6)            | C16       | H16C        | 0.9        | 600                 |
| С4 С5                    |                  | 0.9300               | C17       | H17A        | 0.9        | 600                 |
| C5-C6                    |                  | 1 369 (5)            | C17       | H17B        | 0.9        | 600                 |
| С5—Н5                    |                  | 0.9300               | C17       | —H17C       | 0.9        | 600                 |
| C10-01-0                 | 29               | 110.0 (3)            | 01-       |             | 111        | 0(3)                |
| $C_{12} = 0_{3} = 0_{3}$ | 7                | 110.0(3)             | 01-       | -C10-C7     | 104        | 56(3)               |
| C13-05-0                 | 14               | 121.5(3)             | C11       | -C10-C7     | 103        | 3 5 (3)             |
| C13—N—C1                 | 1                | 121.0(3)<br>121.4(3) | 01-       | -C10-H10    | 112        | 2.1                 |
| C13—N—H(                 | )                | 119.3                | C11       |             | 112        | 21                  |
| C11—N—H(                 | )                | 119.3                | C7-       | -C10-H10    | 112        | 2.1                 |
| C6-C1-C2                 | )                | 119.6 (4)            | 07<br>N—  | C11 - C10   | 112        | 70(3)               |
| C6-C1-C7                 | 7                | 121.6 (4)            | N         | C11 - C12   | 113        | $\frac{10}{32}$ (3) |
| $C_{2}$ $C_{1}$ $C_{7}$  | ,                | 118 7 (4)            | C10       | -C11-C12    | 103        | 3 4 (3)             |
| C1 - C2 - C3             | 6                | 119.7 (5)            | N         | C11—H11     | 10         | 76                  |
| С1—С2—Н2                 | ,                | 120.1                | C10       | -C11-H11    | 10         | 7.6                 |
| С3_С2_Н2                 | -<br>)           | 120.1                | C10       | -C11-H11    | 10         | 7.6                 |
| $C_{4}$ $C_{3}$ $C_{7}$  | -                | 120.1                | 02_       | -C12O3      | 10         | 2 4 (3)             |
| С4_С3_Н3                 | 3                | 110.2 (5)            | $02^{-}$  | -C12 $-C11$ | 122        | 39(4)               |
| С7_С3_Н3                 | 3                | 119.9                | 02-       | -C12 $-C11$ | 120        | R 7 (4)             |
| C2 C5 II.                | ·                | 11/./                | 05-       | 012 011     | 100        |                     |

| C3—C4—C5      | 120.4 (5)  | O4—C13—O5      | 126.2 (4)  |
|---------------|------------|----------------|------------|
| C3—C4—H4      | 119.8      | O4—C13—N       | 123.9 (4)  |
| C5—C4—H4      | 119.8      | O5—C13—N       | 109.9 (4)  |
| C4—C5—C6      | 120.4 (5)  | C16—C14—C17    | 110.5 (4)  |
| С4—С5—Н5      | 119.8      | C16—C14—O5     | 102.2 (3)  |
| С6—С5—Н5      | 119.8      | C17—C14—O5     | 109.3 (3)  |
| C1—C6—C5      | 119.6 (5)  | C16—C14—C15    | 112.0 (4)  |
| С1—С6—Н6      | 120.2      | C17—C14—C15    | 112.6 (4)  |
| С5—С6—Н6      | 120.2      | O5-C14-C15     | 109.7 (3)  |
| C1—C7—O3      | 107.6 (3)  | C14—C15—H15A   | 109.5      |
| C1—C7—C8      | 117.4 (3)  | C14—C15—H15B   | 109.5      |
| O3—C7—C8      | 102.9 (3)  | H15A—C15—H15B  | 109.5      |
| C1—C7—C10     | 118.7 (3)  | C14—C15—H15C   | 109.5      |
| O3—C7—C10     | 103.6 (3)  | H15A—C15—H15C  | 109.5      |
| C8—C7—C10     | 104.6 (3)  | H15B—C15—H15C  | 109.5      |
| С7—С8—С9      | 101.1 (3)  | C14—C16—H16A   | 109.5      |
| C7—C8—Cl      | 109.6 (3)  | C14—C16—H16B   | 109.5      |
| C9—C8—Cl      | 110.3 (3)  | H16A—C16—H16B  | 109.5      |
| С7—С8—Н8      | 111.8      | C14—C16—H16C   | 109.5      |
| С9—С8—Н8      | 111.8      | H16A—C16—H16C  | 109.5      |
| Cl—C8—H8      | 111.8      | H16B—C16—H16C  | 109.5      |
| O1—C9—C8      | 105.0 (3)  | C14—C17—H17A   | 109.5      |
| O1—C9—H9A     | 110.8      | С14—С17—Н17В   | 109.5      |
| С8—С9—Н9А     | 110.8      | H17A—C17—H17B  | 109.5      |
| О1—С9—Н9В     | 110.8      | C14—C17—H17C   | 109.5      |
| С8—С9—Н9В     | 110.8      | H17A—C17—H17C  | 109.5      |
| Н9А—С9—Н9В    | 108.8      | H17B—C17—H17C  | 109.5      |
| C6—C1—C2—C3   | -0.9 (6)   | C9—O1—C10—C7   | 3.9 (4)    |
| C7—C1—C2—C3   | 178.8 (4)  | C1—C7—C10—O1   | 152.5 (3)  |
| C1—C2—C3—C4   | 0.3 (7)    | O3—C7—C10—O1   | -88.3 (3)  |
| C2—C3—C4—C5   | 0.4 (8)    | C8—C7—C10—O1   | 19.3 (4)   |
| C3—C4—C5—C6   | -0.5 (8)   | C1—C7—C10—C11  | -90.8 (4)  |
| C2—C1—C6—C5   | 0.9 (7)    | O3—C7—C10—C11  | 28.5 (3)   |
| C7—C1—C6—C5   | -178.8 (4) | C8—C7—C10—C11  | 136.0 (3)  |
| C4—C5—C6—C1   | -0.2 (8)   | C13—N—C11—C10  | -116.8 (4) |
| C6—C1—C7—O3   | -138.5 (4) | C13—N—C11—C12  | 123.1 (4)  |
| C2—C1—C7—O3   | 41.8 (4)   | O1—C10—C11—N   | -42.8 (4)  |
| C6—C1—C7—C8   | 106.1 (5)  | C7—C10—C11—N   | -155.7 (3) |
| C2—C1—C7—C8   | -73.6 (5)  | O1—C10—C11—C12 | 82.5 (4)   |
| C6—C1—C7—C10  | -21.4 (5)  | C7—C10—C11—C12 | -30.4 (4)  |
| C2—C1—C7—C10  | 158.9 (4)  | C7—O3—C12—O2   | 178.3 (3)  |
| C12—O3—C7—C1  | 110.8 (3)  | C7—O3—C12—C11  | -3.7 (4)   |
| C12—O3—C7—C8  | -124.7 (3) | N—C11—C12—O2   | -32.6 (6)  |
| C12—O3—C7—C10 | -15.9 (4)  | C10-C11-C12-O2 | -160.2 (4) |
| C1—C7—C8—C9   | -167.4 (3) | N—C11—C12—O3   | 149.5 (3)  |
| O3—C7—C8—C9   | 74.6 (3)   | C10—C11—C12—O3 | 21.9 (4)   |
| C10—C7—C8—C9  | -33.4 (4)  | C14—O5—C13—O4  | -2.5 (7)   |
| C1—C7—C8—Cl   | -50.9 (4)  | C14—O5—C13—N   | 178.3 (3)  |
| O3—C7—C8—Cl   | -168.9 (2) | C11—N—C13—O4   | -7.9 (6)   |

| C10—C7—C8—Cl  | 83.1 (3)   | C11—N—C13—O5   | 171.3 (3)  |
|---------------|------------|----------------|------------|
| C10—O1—C9—C8  | -25.6 (4)  | C13-O5-C14-C16 | -177.6 (4) |
| C7—C8—C9—O1   | 36.0 (4)   | C13—O5—C14—C17 | -60.5 (5)  |
| Cl-C8-C9-O1   | -79.9 (3)  | C13-O5-C14-C15 | 63.4 (5)   |
| C9—O1—C10—C11 | -107.7 (3) |                |            |



